The fundamentals of the stochastic approach to GW:

  • D. Neuhauser, Y. Gao, C. Arntsen, C. Karshenas, E. Rabani and R. Baer, Breaking the theoretical scaling limit for predicting quasi-particle energies: The stochastic GW approach, Phys. Rev. Lett.113, 076402 (2014) (Editor’s choice).
  • V. Vlcek, E. Rabani, D. Neuhauser and R. Baer, Stochastic GW calculations for molecules, J. Chem. Theo. Comput., 13, 4997 (2017).
  • V. Vlcek, W. Li, R. Baer, E. Rabani and D. Neuhauser, Swift GW beyond 10,000 electrons using sparse stochastic compression, Phys. Rev. B, 98, 075107 (2018).
  • M. Nguyen and D. Neuhauser, Gapped-filtering for efficient Chebyshev expansion of the density projection operator, Chem. Phys. Lett. 806, 140036 (2022).

The stochasticGW code further contributed to the following papers:

  • V. Vlcek, E. Rabani, D. Neuhauser and R. Baer, Stochastic GW calculations for molecules, J. Chem. Theory Comput. 13, 4997 (2017).
  • V. Vlcek, W. Li, R. Baer, E. Rabani and D. Neuhauser, Swift GW beyond 10,000 electrons using sparse stochastic compression, Phys. Rev. B, 98, 075107 (2018).
  • V. Vlcek, R. Baer, E. Rabani and D. Neuhauser, Simple eigenvalue-self-consistent ΔGW0, J. Chem. Phys. 149, 174107 (2018).
  • V. Vlcek, E. Rabani, R. Baer and D. Neuhauser, Nonmonotonic band gap evolution in bent phosphorene nanosheets, Phys. Rev. Matt., 3, 064601 (2019).
  • V. Vlcek, Stochastic vertex corrections: linear scaling methods for accurate quasiparticle energies, J. Chem. Theory Comput. 15, 6254 (2019).
  • J. Brooks, G. Weng, S. Taylor and V. Vlcek, Stochastic many-body perturbation theory for Moiré states in twisted bilayer phosphorene, J Phys: Condens Matter 32, 23 (2020) – Special Issue: Emerging Leaders  2019.
  • G. Weng and V. Vlcek, Quasiparticles and Band Transport in Organized Nanostructures of Donor-Acceptor Copolymers, J. Phys. Chem. Lett. 11, 7177 (2020).
  • M. Romanova and V. Vlcek, Decomposition and embedding in the stochastic GW self-energy J. Chem. Phys. 153, 134103 (2020).