The fundamentals of the stochastic approach to GW:
D. Neuhauser, Y. Gao, C. Arntsen, C. Karshenas, E. Rabani and R. Baer, Breaking the theoretical scaling limit for predicting quasi-particle energies: The stochastic GW approach, Phys. Rev. Lett., 113, 076402 (2014) (Editor’s choice).
V. Vlcek, E. Rabani, D. Neuhauser and R. Baer, Stochastic GW calculations for molecules, J. Chem. Theo. Comput., 13, 4997 (2017).
V. Vlcek, W. Li, R. Baer, E. Rabani and D. Neuhauser, Swift GW beyond 10,000 electrons using sparse stochastic compression, Phys. Rev. B, 98, 075107 (2018).
M. Nguyen and D. Neuhauser, Gapped-filtering for efficient Chebyshev expansion of the density projection operator, Chem. Phys. Lett. 806, 140036 (2022).
The stochasticGW code further contributed to the following papers:
V. Vlcek, E. Rabani, D. Neuhauser and R. Baer, Stochastic GW calculations for molecules, J. Chem. Theory Comput.13, 4997 (2017).
V. Vlcek, W. Li, R. Baer, E. Rabani and D. Neuhauser, Swift GW beyond 10,000 electrons using sparse stochastic compression, Phys. Rev. B, 98, 075107 (2018).
V. Vlcek, R. Baer, E. Rabani and D. Neuhauser, Simple eigenvalue-self-consistent ΔGW0, J. Chem. Phys. 149, 174107 (2018).
V. Vlcek, E. Rabani, R. Baer and D. Neuhauser, Nonmonotonic band gap evolution in bent phosphorene nanosheets, Phys. Rev. Matt., 3, 064601 (2019).
V. Vlcek, Stochastic vertex corrections: linear scaling methods for accurate quasiparticle energies, J. Chem. Theory Comput. 15, 6254 (2019).
J. Brooks, G. Weng, S. Taylor and V. Vlcek, Stochastic many-body perturbation theory for Moiré states in twisted bilayer phosphorene, J Phys: Condens Matter 32, 23 (2020) – Special Issue: Emerging Leaders 2019.
G. Weng and V. Vlcek, Quasiparticles and Band Transport in Organized Nanostructures of Donor-Acceptor Copolymers, J. Phys. Chem. Lett. 11, 7177 (2020).
M. Romanova and V. Vlcek, Decomposition and embedding in the stochastic GW self-energy J. Chem. Phys. 153, 134103 (2020).